
Prediction of Functional Requirements Classes In

Business Information Systems

ARBI GHAZARIAN

Arizona State University,

Department of Engineering,

7171 E. Sonoran Arroyo Mall, Peralta Hall,

Mesa, AZ 85212, USA
Arbi.Ghazarian@asu.edu

Abstract: - Low predictability is a major concern in most software development endeavors as it implies high

risk in terms of schedule, quality, and cost. Ontologies have received considerable attention in software

engineering, as they afford predictive capabilities for various aspects of software domains, and as such, they

can be employed as a basis for the development of more effective approaches to the engineering and

management of software systems and projects. Ontologies, however, vary in terms of the comprehensiveness

and accuracy of the predictions they make and, therefore, one must rigorously evaluate their predictive power

before adopting them. This paper investigates the predictive power of an ontology that serves as a requirements

domain model for Business Information Systems (BIS). Results from this study indicate that an accurate

prediction of functional requirements categories in BIS is well within reach. This finding bears important

implications for the advancement of domain-specific engineering of Business Information Systems.

Key-Words: - Business Information Systems, Domain Model, Functional Requirements, Ontology,

Empirical Study

1 Introduction

Domain-specific and knowledge-based approaches

to information systems development have the

potential to yield considerable improvements over

conventional generic approaches, both in terms of

software product quality and process productivity,

as they use knowledge of their underlying domains

to better guide the software development process. It

goes without saying, then, that the degree of success

of domain-specific techniques and processes depend

upon the extent and accuracy of their underlying

knowledge of their corresponding domains. That is,

how accurately a domain model, derived from past

systems, predicts aspects of interest in future

systems within that same domain? Such predictions

can then be used in making informed decisions

about system development practices within that

domain. For instance, the capability to accurately

predict the classes of requirements in future to-be-

developed systems in an organization that develops

software within a particular domain, such as the

domain of business information systems, embedded

systems, or scientific systems, will allow system

developers within organizations to proactively

make optimal choices in terms of selecting the

right architectural and design patterns, coding

styles, and testing techniques, etc. which, in turn,

will make a significant contribution to the success

of information technology implementations within

these organizations.

 Domain knowledge is often captured in the

form of a domain model, and represented as an

ontology, that characterizes aspects of interest from

the domain. Developing, validating, and refining

domain models are a major goal of research in the

field of domain-specific software engineering. A

previous large-scale empirical study by Ghazarian

[9] developed a domain model to characterize the

functional requirements space in business

information systems. The study used data from 15

industrial software systems in the domain of

enterprise applications and analyzed over 1200

atomic functional software requirements to identify

the various classes of functional requirements and

their frequency distributions. The domain model

that emerged is, in essence, an ontological-statistical

descriptive model as it provides an ontology of

functional requirements categories in the domain of

enterprise systems along with detailed descriptive

statistics about each of the identified requirements

categories. The ontological categories of this model

have been summarized in Table 1. However, for

brevity, we have eliminated the formal relationships

among the requirements categories, as we will not

WSEAS TRANSACTIONS on BUSINESS and ECONOMICS Arbi Ghazarian

E-ISSN: 2224-2899 142 Issue 3, Volume 10, July 2013

be concerned with these relationships in this current

study. Note that throughout this paper, we will use

the terms business information systems and

enterprise information systems synonymously.

Beyond describing the initial empirical data set

from which a domain model is built upon, an

important strength of a useful domain model is its

predictive power. That is, the degree of accuracy

with which a domain model describes future

systems (i.e., prediction) within that domain? It is

precisely this prediction about characteristics of

future (i.e., unobserved) systems in a domain that

enables us to develop effective tools, techniques,

and processes for the engineering of systems in a

particular domain. Accordingly, the purpose of this

current study is to empirically evaluate the

predictive power of the given requirements domain

model.

TABLE 1 ONTOLOGICAL-STATISTICAL DESCRIPTIVE REQUIREMENTS DOMAIN MODEL

FOR BUSINESS INFORMATION SYSTEMS. DATA DRAWN FROM [9]

Requirement Class Percentage of

Total

Requirements

Average (%) Over

15 Observed

Systems

Standard

Deviation

Median (%)

Data Output 26.37 22.21 11.29 20.51

Data Input 19.88 19.58 5.42 18.47

Event Trigger 16.18 11.70 7.84 11.11

Business Logic 11.66 14.56 8.75 14.28

Data Persistence 10.84 14.53 11.11 11.76

User Interface Navigation 4.84 6.43 6.75 4.54

External Call 2.62 3.00 5.70 0.00

Communication 2.30 1.32 2.04 0.00

User Interface 1.97 2.04 3.80 0.00

User Interface Logic 1.64 2.26 3.16 0.49

Data Validation 0.98 1.65 2.43 0.00

External Behaviour 0.65 0.65 1.70 0.00

The rest of this paper is organized as

follows: First, we will describe the empirical

study that was conducted to evaluate the given

requirements domain model, followed by a

presentation and discussion of the results. Next,

we will discuss the background and related

work. Finally, we will conclude by

summarizing the conclusions and a discussion

of directions for future research.

2 Empirical Study
2.1 Research Questions

The main purpose of the empirical study was to

evaluate the accuracy of the predictions that can

be made using the descriptive domain model

reported in [9] and summarized in Table 1. In

essence, this model is capable of making two

types of predictions about future systems in the

WSEAS TRANSACTIONS on BUSINESS and ECONOMICS Arbi Ghazarian

E-ISSN: 2224-2899 143 Issue 3, Volume 10, July 2013

domain of enterprise systems: (a) predictions

about the classes of functional requirements that

one might expect to observe in specifications of

requirements for enterprise systems and (b)

predictions about the degree of dominance of

various requirements classes (e.g., relative sizes

of each class of functional requirements

compared to the entire requirements set in an

application). Accordingly, we formulated the

following three research questions, which

collectively, capture the goal of our study.

1. What percentage of requirements and

requirements classes in business systems

can be predicted by the ontology of the

requirement classes in the given domain

model? Or inversely, on average, what

percentage of requirements in business

systems belong to requirements classes

that are non-existing in the ontology of

the given domain model. In summary,

how comprehensive is the taxonomy of

functional requirements classes (see the

1
st
 column in Table 1) in the given

domain model?

2. How accurately does the domain model

predict the dominating classes of

requirements (a.k.a., core domain

requirements) in the domain of

enterprise systems?

3. How accurately does the domain model

predict the relative sizes of the various

classes of requirements in the domain of

business systems?

2.2 Case Study Process

To answer our research questions, we

conducted a large multi-case study using data

from three industrial software projects in the

domain of business systems. The study was

conducted in two phases. In the first phase of

the study, we collected and analyzed data from

the requirements specification for an online

marketplace software system for audio content.

Throughout this paper, we will refer to this

project as Case 1. The software requirements

for this project was documented in the form of a

46-page use case document, containing 71 use

cases and a total of 577 atomic functional

requirements. We included all of the

requirements of this system in our research

dataset.

Atomic statements of software requirements

for Case 1 were entered into a requirements

research database. Individual statements of

requirements were then classified into

requirements classes provided by the ontology

of the requirements categories in the given

domain model (refer to the 1
st
 column in Table

1 for a list of requirements categories). The

manual classification process was conducted

twice and independently to ensure classification

accuracy. The use of atomic requirements

further increases the accuracy of the

classification process as it ensures that all

requirements are stated at the same level of

granularity. We only assigned a requirement to

an existing requirement class from the given

domain model when the statement of

requirement completely and accurately matched

the description given by the domain model for

that class of requirement. The idea was to create

a new requirement class whenever we would

encounter a software requirement that could not

be accurately classified under one of the

existing requirements classes provided by the

given ontology. The count or percentage of the

requirements that would need a requirements

class not provided by the ontology would give

us a measure of the incomprehensiveness of the

requirements taxonomy given by the domain

model. Table 2 shows the results of the

classification process for Case 1 along with the

frequency distribution for the various

requirements classes.

Although the relatively large number of

requirements statements in Case 1 provided us

enough data to complete the study with a high

degree of confidence to its findings, we,

nevertheless, felt that our study could benefit

from replication with other systems in the

domain of business systems. Therefore, in the

second phase of the study, we collected and

analyzed data from two more business

information systems in order to aggregate

further evidence to support or challenge some

of the findings of the first case study. The two

new systems studied in phase 2 of our study

WSEAS TRANSACTIONS on BUSINESS and ECONOMICS Arbi Ghazarian

E-ISSN: 2224-2899 144 Issue 3, Volume 10, July 2013

included a web-based investment management

and trading software system with 71 pages of

requirements documentation and a web-based

banking software system with 94 pages of

requirements documentation, which were used

as source of research data for phase 2 of our

empirical study. Throughout this paper, we will

refer to these systems as Case 2 and Case 3,

respectively. For confidentiality reasons, we

keep the three project names used in our study

and the organizations that owned these projects

anonymous. It must be noted that the three

systems used in this present study are

completely independent from the systems used

to derive the original ontology presented in [9].

We randomly selected a set of 50 atomic

software requirements from each of the two

new cases in the second phase of the study and

replicated the classification process with these

two datasets. The results are presented in Table

3 and Table 4.

TABLE 2 REQUIREMENTS CLASSES AND THEIR FREQUENCY DISTRIBUTIONS IN THE

TARGET SYSTEM (CASE 1)

Requirement Class Count of

Requirements

Percentage of

Requirements

User Interface 150 25.99

Event Trigger 145 25.12

Data Input 97 16.81

User Interface Logic 60 10.39

Data Output 55 9.53

User Interface Navigation 48 8.31

Business Logic 11 1.90

Data Validation 4 0.69

Post Condition 4 0.69

Communication 2 0.34

Data Persistence 1 0.17

Total 577 100

WSEAS TRANSACTIONS on BUSINESS and ECONOMICS Arbi Ghazarian

E-ISSN: 2224-2899 145 Issue 3, Volume 10, July 2013

TABLE 3 REQUIREMENTS CLASSES AND THEIR FREQUENCY DISTRIBUTIONS IN A SET

OF 50 RANDOMLY-SELECTED REQUIREMENTS IN CASE 2

Requirement Class Count of

Requirements

Percentage of

Requirements

Data Output 18 36

Business Logic 8 16

Event Trigger 7 14

User Interface Navigation 5 10

User Interface 5 10

User Interface Logic 4 8

Data Source 3 6

Total 50 100

TABLE 4 REQUIREMENTS CLASSES AND THEIR FREQUENCY DISTRIBUTIONS IN A SET

OF 50 RANDOMLY-SELECTED REQUIREMENTS IN CASE 3

Requirement Class Count of

Requirements

Percentage of

Requirements

Data Output 12 24

Data Validation 11 22

Data Input 10 10

Business Logic 6 12

Event Trigger 5 10

User Interface Navigation 3 6

User Interface 2 4

User Interface Logic 1 2

Total 50 100

In the next section, we will use the

results of the analyses, compiled in Table 2,

Table 3, and Table 4 to answer our research

questions.

WSEAS TRANSACTIONS on BUSINESS and ECONOMICS Arbi Ghazarian

E-ISSN: 2224-2899 146 Issue 3, Volume 10, July 2013

3 Results and Discussion
3.1 Answer to the First Research Question

The classification of requirements in the target

system (Case 1), as demonstrated by Table 2,

showed that the ontology of functional

requirements classes provided by the given

domain model is exceedingly comprehensive;

of the 11 requirements classes found in the case

under study, 10 were already existing as part of

the ontology of the requirement classes in the

given domain model; only requirements of type

post-condition with a negligible share of 0.69%

of the total number of requirements in Case 1

were not covered by a requirements class in the

given domain model. The domain model was

capable of predicting 99.31% of all the

requirements in the studied system, which is a

remarkably strong result with significant

potential implications for domain-specific

engineering of software systems. The two

requirements classes of external behaviour and

external call were not observed in the studied

system.

Although the domain model predicted the

classes of requirements in Case 1 with a high

degree of accuracy, findings from a single case,

although insightful, is often not convincing

enough to enable us to generalize the findings

to the entire population of enterprise systems.

Therefore, as mentioned earlier, we replicated

the study with two more cases: Case 2 and Case

3. As shown in Table 3, there were 7 classes of

functional requirements in the dataset selected

from Case 2, of which 6 were predicted by the

given domain model. We only observed one

new type of requirement class that was not part

of the domain model, namely the data source

requirement class with a share of 6% of

requirements in the studied dataset. 94% of the

requirements in the dataset for Case 2 were

covered by the domain model. We did not

observe data input, data validation, external

call, external behaviour, data persistence, and

communication requirements in Case 2.

In Case 3, as shown in Table 4, 100% of the

requirements types were predicted by the

domain model; no new requirements types were

observed that were not already part of the

domain model. The four requirements classes of

external calls, external behaviour,

communication, and data persistence were not

observed in the dataset of Case 3.

Overall, the fact that the domain model was

capable of predicting the types of 99.31% of

functional requirements in Case 1, 94% in Case

2, and 100% in Case 3 enhanced our confidence

that our findings generalize to the domain of

enterprise application.

Another way to look at our study is that we

analyzed 677 atomic functional software

requirements in the domain of enterprise

application and we only found 7 statements of

requirements that could not be classified under

one of the categories provided by the given

domain model. The remaining 670

requirements, accounting for 98.96% of the

total number of requirements in our three data

sets, were covered by the 12 requirements

classes in the original domain model. We only

need to add two new requirements classes,

namely post-condition and data source, to

achieve 100% coverage in all the of the three

studied system.

Case studies like the ones reported in this

paper not only help us to evaluate our domain

models, but also to refine our original models to

achieve even higher predictive power. For

instance, after conducting the three case studies

reported in this paper, we refined the ontology

of the original domain model by adding to it the

two newly discovered requirements classes. The

resulting ontology with its 14 requirements

classes and a brief description of each class

have been presented in Table 7 in the Appendix

section of this paper.

Software engineering, in general, deals with

two spaces: the problem space and the solution

space. While the problem space deals with

exploring and specifying the problem to be

solved, the solution space, deals with

addressing the problems identified in the

problem space through activities such as

solution architecting, software design, and

implementation. What make solution space

WSEAS TRANSACTIONS on BUSINESS and ECONOMICS Arbi Ghazarian

E-ISSN: 2224-2899 147 Issue 3, Volume 10, July 2013

activities daunting, time-consuming, error-

prone, and costly is the infinite software design

space, demanding a great deal of creativity and

experience on the part of software engineers.

With this in mind, the requirements domain

ontology we evaluated in this research project

can be a powerful means for advancing the field

of domain-specific software engineering

because, in essence, it gives us a small set of

requirements categories - or classes of problems

or problem dimensions - that comprehensively

describes the make-up of the specifications of

the requirements for software systems in a

particular domain such as the domain of

enterprise application. It gives us a way to

organize the problem space in a domain into a

small set of requirements classes, which, in

turn, facilitates solution space activities.

In theory, if, as we demonstrated in this

paper, the ontology of requirements types

provided by the domain model for enterprise

systems is comprehensive, then the solution

space activities are reduced to addressing the 14

classes of requirements that make up the

problem space in any enterprise application. In

other words, the otherwise infinite software

design space is now reduced to being able to

address 14 types of problems in order to be able

to develop any software application within the

domain of enterprise systems. This gives us the

capability to document our requirements classes

along with the best practices to address them

and create domain handbooks to facilitate

knowledge transfer and increase productivity as

well as quality in developing software systems

in a domain.

In practice, we do not even need to devise a

solution to every category of problems

identified in the domain model as some of these

requirements classes, as indicated by their

frequency distributions, occur very

infrequently; we just need to identify the

frequently-occurring requirements categories

for a domain and address those in order to be

able to provide solutions for a large number of

problems in a domain. This raises the questions

how frequently different classes of requirements

occur in systems in a domain? And what the

core requirements types are in a domain? These

are the subjects of our next research questions.

In what follows, we will answer these

questions.

3.2 Answer to the Second Research Question

The domain model identifies data outputs, data

inputs, event triggers, business logic, and data

persistence as the five dominating classes of

functional requirements in the domain of

enterprise systems. These classes of

requirements each had a contribution of more

than 10% to the total number of requirements in

the systems that were used to develop the

domain model. As indicated by Table 2, data

from our study showed that data inputs, data

outputs, and event triggers were indeed among

the most frequently-occurring requirements

classes in the studied case (Case 1) as predicted

by the given domain model for enterprise

systems. However, the two requirements classes

of business logic and data persistence were not

among the core requirements classes in the

studied system; instead, the three requirements

classes of user interface and user interface logic

followed by user interface navigation were

among the most frequently-occurring categories

of requirements. This is an interesting

observation because the three requirements

classes that were not predicted by the given

domain model as core requirement types are all

user interface-related. This observation led to a

hypothesis that requirements specification

practices in the industry vary considerably in

terms of the emphasis they place on having a

detailed textual specification of their user

interface-related requirements.

In practice, it is not uncommon for

development organizations to capture their user

interface-related requirements using

wireframes, prototypes, screen mocks, and

other similar techniques that are visual rather

than textual. As a result, fewer user interface-

related requirements end up in the requirements

specification documents, which can introduce

noise in the predictive models that are built

based on these textual specifications. This

phenomenon can be observed in the model

presented by Table 1, where the median values

WSEAS TRANSACTIONS on BUSINESS and ECONOMICS Arbi Ghazarian

E-ISSN: 2224-2899 148 Issue 3, Volume 10, July 2013

for the user interface navigation, user interface,

and user interface logic class of requirements in

the 15 systems that were used to build the

original domain model are 4.57, 0.00, and 0.49,

respectively. These low median values are an

indication that in many of these enterprise

systems user interface-related requirements

were not thoroughly specified textually within

their corresponding requirements specifications.

To evaluate the validity of this hypothesis,

we removed all of the three user-interface

related classes of requirements from both the

original dataset, comprising of the 15 enterprise

systems that were used to build the domain

model, as well as the main target system (Case

1) in our study. The refined ontological-

statistical domain model is shown in Table 5.

The frequency distribution of requirements

classes in the Case 1 after removing the user

interface-related requirements classes is shown

in Table 6.

TABLE 5 REFINED ONTOLOGICAL-STATISTICAL REQUIREMENTS DOMAIN MODEL FOR

ENTERPRISE SYSTEMS - NOT CONSIDERING USER INTERFACE RELATED CLASSES

Requirement Class Percentage of

Total

Requirements

Average (%) Over

15 Observed

Systems

Standard

Deviation

Median (%)

Data Output 28.81 24.64 12.05 23.07

Data Input 21.72 21.81 5.36 19.56

Event Trigger 17.68 13.22 8.89 11.53

Business Logic 12.74 16.36 9.85 14.42

Data Persistence 11.84 16.64 13.46 14.45

External Call 2.87 3.30 6.03 0.00

Communication 2.51 1.43 2.21 0.00

Data Validation 1.07 1.86 2.77 0.00

External Behaviour 0.71 0.70 1.79 0.00

WSEAS TRANSACTIONS on BUSINESS and ECONOMICS Arbi Ghazarian

E-ISSN: 2224-2899 149 Issue 3, Volume 10, July 2013

TABLE 6 NON-USER INTERFACE-RELATED REQUIREMENTS CLASSES AND THEIR

FREQUENCY DISTRIBUTIONS IN THE TARGET SYSTEM (CASE 1)

Requirement Class Count of

Requirements

Percentage of

Requirements

Event Trigger 145 45.45

Data Input 97 30.40

Data Output 55 17.24

Business Logic 11 3.44

Data Validation 4 1.25

Post Condition 4 1.25

Communication 2 0.62

Data Persistence 1 0.31

Total 319 100

As it can be observed from the data of Table

6, removing user interface-related requirements

from the calculations of frequency distributions

increases the rank of the business logic category

of requirements, making it the forth most

frequently-occurring type of requirements in

Case 1. This improved the accuracy of the

predictions made by the refined domain model

as the domain model is now correctly predicting

four out of five core requirements in the target

system. However, in spite of this better

prediction, we consider this improvement over

the original model minimal as the business logic

category of requirements has only a share of

3.44% of the total number of requirements in

the target system, which is not a large enough

share to make it a core requirement type. Note

that in developing the original domain model

the threshold for a requirement class to be

considered a core requirement class was set at a

share of at least 10% of the total number of

requirements. As indicated by the data of Table

6, data outputs, which rank just one place above

business logic class of requirements, have a

total share of 17.24% of the total number of

requirements in the system, creating a

whopping 13.8% gap in terms of requirement

class size. Nonetheless, event triggers, data

inputs, and data outputs are three of the core

requirements categories that both the original

and the refined model correctly predicted.

These three requirements classes were also

observed among the core requirements in Case

3. In fact, both the original and the refined

domain models correctly predicted the four core

classes of requirements in Case 3. In Case 2,

event triggers, business logic, and data outputs

were the core classes of requirements that were

correctly predicted.

Two observations deserve attention in Case

2 and Case 3. First, we noticed that there are no

requirements of type data input in Case 2.

Second, data validations are among the most

frequently-occurring requirements in Case 3.

Both of these observations are inconsistent with

our previous observations in all the systems we

have studied so far. In the majority of systems

we have looked at in the past, data inputs have

typically been among the core requirement

types whereas data validations have been

among the least-frequently occurring

WSEAS TRANSACTIONS on BUSINESS and ECONOMICS Arbi Ghazarian

E-ISSN: 2224-2899 150 Issue 3, Volume 10, July 2013

requirement types, accounting for a small share

of requirements in this domain.

To understand the reason for these

contrasting observations, we inspected the

requirements specification documents for Case

2 and Case 3 and compared them to all the

previous systems we had studied. There was a

striking difference in terms of the specification

style and format; whereas all of the previous

cases we had studied had their requirements

specified in the form of use case documents, the

requirements for Case 2 and Case 3 were

specified using proprietary templates. In Case 2,

the template for the requirements document

included a table for each application screen,

with rows for each item on screen and columns

for the format and data validation rules for each

item. It was precisely this imposed

documentation structure that had obliged the

requirements engineers to capture a large

number of data validation rules. In the absence

of such a structure, many of these data

validation requirements would remain implicit

and undocumented.

In Case 3, the specification of requirements

was driven by screen mock-ups. The screen

mock-ups were not meant to serve as the final

design for the system's user interface; they were

only employed as a means to facilitate the

capturing of requirements and for illustrative

purposes only. Editable user interface

components on screen mock-ups were meant to

implicitly suggest the data input requirements

for each application screen and as such they

were not explicitly specified. This style of

specification is in contrast to the use case

format for requirements specification, where,

typically, the textual description of the use case

includes one or more steps to capture data input

requirements. This explained why there were no

statements describing data inputs in Case 3. The

absence of data inputs in Case 3 was a by-

product of a stylistic choice in the specification

of requirements rather than any indication of

features that do not require data inputs. If we

were to convert the requirements documents for

Case 3 into use case format, data inputs could

well be among the core requirements types. To

summarize, we found that:

 Data output and event trigger categories

of requirements have been unanimously

observed among the core requirement

types in all of the systems we have

studied so far.

 Requirements specification style

matters. It is an important factor in

determining which classes of

requirements will be explicitly

documented and which classes will

potentially be missed or remain implicit

or unnoticed.

 The classes of requirements in the

domain of enterprise systems can be

divided into two categories of core and

non-core requirements. Core

requirement classes tend to exist in

almost all systems in this domain and

occur more frequently, though due to

specification style and other factors,

some core requirement classes might

remain unstated and implicit (e.g., they

exist in the heads of project

stakeholders). Non-core requirements

classes, in contrast, are not commonly

observed in systems in a domain and

even when they occur, they account for

a relatively small share of the total

number of requirements.

 Based on analyses of 18 industrial cases

in the domain of enterprise systems that

we have looked at so far, we have

identified 9 core requirements classes.

These core requirements classes include

data output, data input, event trigger,

business logic, data persistence, data

validation, user interface, user interface

logic, and user interface navigation.

Non-core requirements classes that we

have observed so far include the

requirement classes of external

behavior, external call, communication,

post-condition, and data source.

3.3 Answer to the Third Research Question

Of the 12 classes of requirements in the

ontology of the given domain model, the sizes

of 6 classes could be correctly estimated within

WSEAS TRANSACTIONS on BUSINESS and ECONOMICS Arbi Ghazarian

E-ISSN: 2224-2899 151 Issue 3, Volume 10, July 2013

one standard deviation of the mean by the

statistical part of the domain model. These six

classes include data input, user interface

navigation, external call, communication, data

validation, and external behavior. For the

purposes of this study, we consider a good

estimate of a requirement class size one that is

within one standard deviation of the mean. With

this in mind, the statistical model of the domain,

presented in Table 1, predicts that data input

class of requirements in applications from the

domain of enterprise systems have a share of

between 14.14 and 25.01 percent of the total

number of requirements in their corresponding

specifications. In the main target system (Case

1), we observed that data inputs had a share of

16.81% of requirements, which nicely fits

within the predicted range of the domain model.

In a similar fashion, the class size for the other

5 requirements classes of user interface

navigation, external call, communication, data

validation, and external behavior all lie within

the predicted range of the domain model.

The statistical part of the refined domain

model, on the other hand, were capable of

predicting the sizes of the five requirements

classes of data output, data validations,

communication, external call, and external

behaviour. The statistics in the refined domain

model predicts that the data output class of

requirements in applications from the domain of

enterprise systems has a share of between 12.59

and 36.60 percent of the total number of

requirements in their corresponding

specifications. In the studied system, we

observed that data outputs had a share of

17.24% of requirements, which nicely fits

within the predicted range of the domain model.

In a similar fashion, the class size for the other

4 requirements classes of data validation,

communication, external call, and external

behaviour all lie within the predicted range of

the domain model.

Notice that in both the original and the

refined domain model, the size of only one or

two core requirements class is predicted with

acceptable accuracy. However, both models

accurately predict the sizes of multiple non-core

requirements classes. Due to variation in

applications in a domain as well as the

inconsistencies in specification style, it might

be difficult, if not impractical, to come up with

a statistical model for the domain of enterprise

systems that is capable of providing accurate

predictions about the sizes of most core

requirement classes. On the other hand, our

study demonstrated that a comprehensive

ontology of core requirement categories for the

domain of enterprise systems can be built and,

therefore, accurate predictions of requirements

classes in the domain of enterprise systems are

quite possible.

4 Background and Related Work

There is broad consensus in the software

engineering community that software

engineering and, in particular, requirements

engineering, as knowledge-intensive activities,

will benefit from advancements in approaches

that provide for more effective knowledge

sharing and management. Furthermore, focus

on specific domains or application areas allows

for the capturing of specialized knowledge that

would have otherwise been difficult or led to a

less-useful and over-generalized one-size-fit-all

solution [12,13,14]. These considerations,

among others, have lead to the growing field of

domain engineering, which is concerned with

the identification, modelling, construction,

cataloging, and dissemination of software

artifacts that can be applied to existing and

future software projects in a particular

application domain [29]. Domain analysis,

which is a major activity in domain

engineering, is concerned with developing a

model of the domain [1, 5, 27], which among

other forms, can be represented as an ontology.

Ontologies, as explicit formal specifications

of shared conceptualizations [3, 16, 32], can be

effectively employed as a means to capturing,

communicating, and managing knowledge

about domains or application areas. An

ontology enumerates the concepts relevant in an

application area, defining the classes of

concepts and the relationships among the

concept classes, thereby providing a universe of

discourse [26]. An ontology is a theory about a

WSEAS TRANSACTIONS on BUSINESS and ECONOMICS Arbi Ghazarian

E-ISSN: 2224-2899 152 Issue 3, Volume 10, July 2013

domain [6] and therefore its usefulness can be

measured in terms of its descriptive and

predictive power. The empirical study reported

in this paper was precisely meant to evaluate

the predictive power of the given requirements

domain model for enterprise systems.

Ontologies have received considerable

attention from the research community as a

promising way to address numerous current

software engineering problems [4, 18, 7].

Ontologies have found wide applications in

numerous areas in software engineering such as

requirements engineering [20, 25], architecture

[19, 33], software comprehension [35], software

maintenance [23], software methodologies [15],

software cost estimation [17], traceability [28,

30, 37], software modelling [24], and model

transformation [21], just to name a few.

The ontology presented and evaluated in

this paper shares with all of these previous

studies of ontologies the common goal of

capturing, as accurately as possible, the

knowledge of an aspect of a domain in order to

facilitate the software development process.

However, the ontology described and evaluated

in this paper differs from previous work in three

major ways.

First, we augmented our ontological

categories with statistical information, which

helped us not only to make assertions about

what exists in their corresponding domain of

discourse (i.e., statements of requirements in the

domain of enterprise systems), but also how

frequently these ontological categories exist

within that domain of discourse. Ontologies can

be represented in various formats including

textual, diagrammatic, tabular, as well as formal

logic. We represented our requirements domain

model in tabular format because it is

particularly suitable for augmentation with

statistical information. The use of statistical

information about ontological categories allow

for a distinction between core and non-core

categories, which, in turn, can have practical

implications. None of the previous studies that

we are aware of had used statistical

information.

Second, the functional requirements

taxonomy presented as part of our domain

model is both comprehensive and fine-grained.

A comprehensive understanding of the problem

domain is fundamental to communicate and

engineer quality requirements for software-

intensive systems [16]. We demonstrated

through multiple case studies that the classes of

functional requirements in our domain model

covered at least 94% of all statements of

requirements in our target systems. The

important point here, however, is that this high

degree of comprehensiveness was not achieved

at the expense of overly generalized and all-

encompassing categories. On the contrary, the

categories of requirements in the domain model

were at the level of atomic requirements, which

are considered to be the smallest unit of

requirements statements [8, 11]. In comparison,

most previous ontologies used broadly

generalized categories. For instance, in [2], a

base requirements ontology is presented, where

functional requirements are divided into three

broad categories of data specification, process

specification, and control specification. The

specification of system functions fall under the

process specification category. In comparison,

in our domain model, functions of an enterprise

system are decomposed and described using

atomic statements of requirements, each

belonging to one of the 14 categories of

functional requirements types presented in our

model. As another example, in [22], functional

requirements are classified under the two broad

categories of primary and secondary functional

requirements, the difference being that primary

functional requirements directly contribute to

the goal of the system, whereas secondary

functional requirements do not yield direct

value to its users.

Functional requirements in the model

presented in [22] are classified, along another

dimension, into two broad categories of user

task and system task based upon how they are

realized. The former category includes tasks

that are performed by a user of the system,

while the latter is performed by the system.

Although these broad classification schemes for

functional requirements, to some extent, help to

WSEAS TRANSACTIONS on BUSINESS and ECONOMICS Arbi Ghazarian

E-ISSN: 2224-2899 153 Issue 3, Volume 10, July 2013

organize and structure functional specifications

and facilitate the understanding of

requirements, they are not specialized enough to

effectively guide or drive the subsequent

development activities. For instance, although

distinguishing between primary and secondary

functional requirements at the level of domain

ontology can help in prioritizing and planning

for requirements, it will not be of much help in

the design and implementation of system

functions. In contrast, an ontology, like the one

presented in this paper, where functional

requirements are classified along atomic

problem dimensions, such as data input, data

validation, business rules, data persistence, and

the like, can directly impact and drive the

design process. This is evident from the

numerous reusable solutions such as APIs,

frameworks, regularities [10], and patterns that

are aligned along one of these problem

dimensions. Data validation frameworks,

business rule engines, and data persistence

frameworks are prime examples of such

reusable solutions.

Finally, our ontology differs from previous

ontologies in a third way, namely its domain of

discourse. For most previous domain

ontologies, the domain of discourse is

comprised of all the entities, whether

conceptual or real, that appear in the domain. In

contrast, the domain ontology presented in this

paper, primarily concerns the statements that

are made about the problem domain. In other

words, while most ontologies are entity-based

ontologies, ours is a sentential ontology.

Depending upon their intended applications,

both types of ontologies are desired. However, a

crucial advantage of a sentential ontology over

entity-based ontologies is its unifying effect

upon various applications within a domain.

The domain of enterprise systems

encompass a wide range of applications such as

accounting, sales, inventory management,

banking, insurance, human resources

management, payroll processing, customer

relationship management, supply chain

management, enterprise resource management,

and numerous other applications. An entity-

based ontology for the domain of enterprise

systems strives to cover entities that appear in

all these various application areas. This seems a

daunting task for the knowledge engineer who

is tasked to develop a domain ontology and may

easily lead to over-generalized concepts and

categories in the resulting domain model in

order to provide a broad coverage of concepts.

In comparison, a sentential ontology makes use

of the fact that, although there exist a wide

variety of concepts in the various applications

within a domain, the specifications of these

applications are successfully accomplished

using statements that belong to a relatively

small set of statement types. The key point here

is that although, in moving from one application

to the next, the set of concepts change

significantly, the categories of statements that

describe the domain remain fairly unchanged.

The dataset we collected and analyzed both

during the initial development of the domain

model and the evaluation of the domain model,

as reported in this paper, provide empirical

evidence to this unifying capability of the given

sentential ontology; the 14 functional

requirements categories, which form the

ontological categories in our domain model,

were enough to cover all of the requirements

statements in the 18 enterprise systems that we

have studied thus far.

4 Conclusion and Future Work
As domain models, represented as ontologies,

become more prevalent for knowledge sharing

and management in the field of software

engineering, a rigorous evaluation of their

usefulness, for instance in terms of their

predictive power, becomes essential.

Accordingly, this paper, through an empirical

multiple case study of industrial software

systems, investigated the predictive power of a

given requirements domain model. Results from

this evaluation, among others, demonstrated

that the given domain model provides a

comprehensive ontology of functional

requirements categories for applications in the

domain of enterprise systems. Furthermore, the

calculation of frequency distributions as well as

descriptive statistical information for the

ontological categories allowed us to distinguish

WSEAS TRANSACTIONS on BUSINESS and ECONOMICS Arbi Ghazarian

E-ISSN: 2224-2899 154 Issue 3, Volume 10, July 2013

between core and non-core requirements

categories. This distinction can have a practical

implication for both software engineering

practitioners and researchers in terms of

attaining a higher return on investment through

directing future efforts toward developing more

effective tools, techniques, processes, and

technologies to better address the core

requirements categories in enterprise systems.

As just an illustrative example of how

predictive power of the proposed ontology has

practical utility, take the case in our domain

model, where it indicates that data output

category of functional requirements, on

average, accounted for over 22% of the

requirements, whereas the communication

requirements, on average, had a share of only

slightly over 1%. Given this information, it

would make sense for a development

organization, with time constraints and

resource limitations, that specializes in

business information system development, to

invest its efforts in developing reusable

frameworks, tools, patterns, or any other

appropriate form of best practices to address

and devise a reusable solution for data output

category of functional requirements rather

than the communication requirements, which,

as the model indicates, occur very infrequently

and, as a result, afford very few opportunities

for solution reuse and consequently increase

in productivity. The domain model can be

effectively employed to inform the decision

making process in numerous ways within

development organizations.

The work reported in this paper can be

continued in several ways. First, further

replications of this study with more applications

in the domain of enterprise systems will help us

to increase our confidence to the findings of this

study or possibly challenge some of the findings

of the study. In this present study, we only used

data based on one complete and two partial

requirements sets from three systems, which

can a threat to the validity of the study. It is

only through a large enough number of

replications with variations and the aggregation

of substantial evidence that we can build

confidence to the usefulness of our models and

theories. From this perspective, we view our

study as a necessary first step that needs to be

continued by the software engineering

researchers, especially those focusing on

business information systems.

A second avenue to continue the research

reported in this paper is to develop and evaluate

ontological-statistical requirements models for

other domains such as the domain of embedded

control systems, scientific simulation systems

[31, 34, 36], mobile systems, medical

information systems, and others. This current

work was concerned with the domain of

enterprise systems. However, the research

methodology used for the work reported here

can be applied to other software domains as

well. Such similar studies conducted in other

domains will not only help us to gain a better

understanding of individual studied domains,

but also to identify contrasts and commonalities

across domains.

Yet a third direction for future research is to

use the ontology presented in this paper, after

sufficient validation, as a solid theoretical

foundation for developing more effective

techniques, tools, processes, and technologies to

better support the development of enterprise

systems. That is to say, every software

engineering approach is based upon a set of

assumptions, whether stated or implicit, about

the domain of application for which it is

intended. It goes without saying, then, that the

degree of the effectiveness of a software

engineering approach is a function of its

underlying assumptions. As a result, an

ontology and the predictions it makes about a

domain can effectively inform the development

of better approaches to the engineering of

systems in a particular domain. Taking this

view, we are currently developing a

requirements engineering process for enterprise

systems that uses the domain model presented

in this paper as its underlying theoretical

framework.

WSEAS TRANSACTIONS on BUSINESS and ECONOMICS Arbi Ghazarian

E-ISSN: 2224-2899 155 Issue 3, Volume 10, July 2013

References:

[1] Arango G., "Domain Analysis - From Art
to Engineering Discipline," in Proceedings
of the 5th International Workshop on
Software Specification and Design, Los
Alamitos, CA, USA, 1989, pp. 152-159.

[2] Assawamekin N. and Sunetnanta T.,
"Ontology-Based Multiperspective
Requirements Traceability Framework,"
Knowledge and Information Systems,
Springer-Verlog London, vol. 25, no. 3, pp.
493-522, 2009.

[3] Borst W.N., Construction of Engineering
Ontologies for Knowledge Sharing and
Reuse. Berlin, Heidelberg: Doctoral
Dissertation, Enschede, NL-Centre for
Telematics and Information Technology,
University of Tweenty, 2006.

[4] Calero Coral, Ruiz Francisco, and Mario
Piattini, Ontologies for Software
Engineering and Software Technology.
Berlin, Heidelberg: Springer, 2006.

[5] Falbo R.A., Guizzardi G., and Duarte K.C.,
"An Ontological Approach to Domain
Engineering," in Proceedings of the 14th
International Conference on Software
Engineering and Knowledge Engineering
(SEKE 2002), 2002.

[6] Falbo R.A., Menezes C.S., and Rocha
A.R.C., "A Systematic Approach for
Building Ontologies," in Proceedings of
the IBERAMIA'98, Lisbon, Portugal, 1998.

[7] Gašević Dragan, Kaviani Nima, and
Milanović Milan, "Ontologies and
Software Engineering," HANDBOOK ON
ONTOLOGIES, International Handbooks
on Information Systems, vol. 5, pp. 593-
615, 2009.

[8] Ghazarian A., "A Formal Scheme for
Systematic Translation of Software
Requirements to Source Code," in
Proceedings of WSEAS Applied Computing
Conference (ACC 2011), Angers, France,
2011, pp. 44-49.

[9] Ghazarian A., "Characterization of
Functional Software Requirements Space:
The Law of Requirements Taxonomic
Growth," in Proceedings of the 20th IEEE
International Requirements Engineering
Conference (RE'2012), Chicago, 2012.

[10] Ghazarian A., "Coordinated software
development: A framework for reasoning
about trace links in software systems," in
Proceedings of the 13th International
Conference on Intelligent Engineering
Systems (2009), 2009, pp. 39-44.

[11] Ghazarian A., Tehrani M.S., and Ghazarian
A., "A Software Requirements
Specification Framework for Objective

Pattern Recognition: A Set-Theoretic
Classification Approach," in Proceedings
of the 16th IEEE International Conference
on Engineering of Complex Computer
Systems (CECCS 2011), 2011, pp. 211-220.

[12] Ghazarian, A., “A Domain-Specific
Architectural Foundation for Engineering
of Numerical Software Systems”, WSEAS
Transactions on Systems, No 7, Vol. 10, pp.
193-208, World Scientific and Engineering
Academy and Society, July 2011.

[13] Ghazarian, A., “Requirements Engineering
for Business Information Systems: A
Dimension-Oriented Approach”, WSEAS
Transactions on Systems, In Press, World
Scientific and Engineering Academy and
Society, 2013.

[14] Ghazarian, A., “The Impact of Architecture
in Engineering of Software Systems”,
WSEAS Transactions on Systems, In Press,
World Scientific and Engineering Academy
and Society, 2013.

[15] Gonzalez C. and Henderson-Sellers B.,
"An Ontology for Software Development
Methodologies and Endeavors," in
Ontologies for SOftware Engineering and
Software Technology, 2006, pp. 123-151.

[16] Gruber T.R., "A Translation Approach to
Portable Ontology Specifications,"
Knowledge Acquisition, vol. 5, no. 2, pp.
199-220, 1993.

[17] Hamdan K. and Khatib H.E., "A Software
Cost Ontology System for Assisting
Estimation of Software Project Effort for
Use With Case Based Reasoning," in
Innovations in Information Technology,
2006, pp. 1-5.

[18] Happel H.J. and Seedorf S., "Applications
of Ontologies in Software Engineering," in
Proceedings of the International Workshop
on Semantic Web Enabled Software
Engineering, 2006.

[19] Hayes-Roth F., "Architecture-Based
Acquisition and development of Software:
Guidelines for Recommendations from the
ARPA Domain-Specific SOftware
Architecture (DSSA) Program," Technical
Report, Teknowledge Federal Systems,
Palo Alto, CA, 1994.

[20] Kaiya H. and Saeki M., "Ontology Based
Requirements Analysis: Lightweight
Semantic Processing Approach," in
Proceedings of the 5th International
Conference on Quality SOftware (QSIC
2005), 2005, pp. 223-230.

[21] Kappel G. et al., "Lifting Metamodels to
Ontologies: A Step the Semantic
Integration of Modeling Languages," in
Proceedings of the ACM/IEEE 9th
International Conference on Model Driven

WSEAS TRANSACTIONS on BUSINESS and ECONOMICS Arbi Ghazarian

E-ISSN: 2224-2899 156 Issue 3, Volume 10, July 2013

Engineering Languages and Systems,
2006, pp. 528-542.

[22] Kassab M., Ormandjieva O., and Daneva
M., "An Ontology Based Approach to
Non-Functional Requirements
Conceptualization," in Proceedings of the
4th IEEE International Conference on
Software Engineering Advances, 2009, pp.
299-308.

[23] Kiefer C., Bernstein A., and Tappolet J.,
"Analyzing Software With iSPARQL," in
Proceedings of the 3rd ESWC
International Workshop on Semantic Web
Enabled Software, 2007.

[24] Knublauch H., "Ontology-Driven Software
Development in the Context of the
Semantic Web: An Example Scenario with
Protege/OWL," in Proceedings of the 1st
International Workshop on the Model-
Driven Semantic Web, 2004.

[25] Lee Seok Won and Gandhi Robin A.,
"Ontology-Based Active Requirements
Engineering Framework," in Software
Engineering Conference, 2005. APSEC
'05. 12th Asia-Pacific, 2005.

[26] Musen M.A., "Domain Ontologies in
Software Engineering: Use of Protege With
the EON Architecture," Methods of
Information in Medicine, vol. 37, no. 4-5,
pp. 540-550, 1998.

[27] Neri, F., Learning and Predicting Financial
Time Series by Combining Evolutionary
Computation and Agent Simulation,
Applications of Evolutionary Computation,
EvoApplications, LNCS 6625, pp. 111–
119, Springer, Heidelberg (2011).

[28] Noll R.P. and Ribeiro M.B., "Enhancing
Traceability Using Ontologies," in
Proceedings of the 2007 ACM Symposium
on Applied Computing (SAC 2007), Seoul,
Korea, 2007, pp. 1496-1497.

[29] Pressman Roger S., Software engineering
A practitioner's approach, 5th ed. New
york, USA: Mc Graw-Hill, 2000.

[30] R.P. Noll and M.B. Ribeiro, "Ontological
Traceability Over The Unified Process," in
Proceedings of the 14th Annual IEEE
International Conference and Workshop on
the Engineering of Computer-Based
Systems (ECBS 2007), 2007, pp. 249-255.

[31] L. Shuang, W. Zhixin, W. Guoqiang, A
Feedback Linearization Based Control
Strategy for VSC-HVDC Transmission
Converters, WSEAS Transactions on
Systems, Issue 2, Volume 10, pp. 49-58,
February 2011.

[32] Studer R., Benjamins V.R., and Fensel D.,
"Knowledge Engineering: Principles and
Methods," Data Knowledge Engineering},
vol. 25, no. 1-2, pp. 161-197, 1998.

[33] Tetlow P. et al., "Ontology-Driven
Architectures and Potential Uses of the
Semantic Web in Systems and Software
Engineering," in W3C Working Draft.,
2006.

[34] Tsay, T-S, Intelligent Guidance and Control
Laws for an Autonomous Underwater
Vehicle,WSEAS Transactions on Systems,
Issue 5, Volume 9, pp. 463-475, May 2010.

[35] Witte R., Zhang Y., and Rilling J.,
"Empowering Software Maintenance With
Semantic Web Technologies," in
Proceedings of the 4th European Semantic
Web Conference, 2007, pp. 37-52.

[36] Xu L., Han Y., Khan M. M., Zhou L.,Yao
G., Chen C., Pan J., A Novel Control
Strategy for Dynamic Voltage Restorer
using Decoupled Multiple Reference
Frame PLL (DMRF-PLL), WSEAS
Transactions on Systems, Issue 2, Volume
8, pp. 261-277, February 2009.

[37] Zhang Y., Witte R., Rilling J., and Haarslev
V., "An Ontology-Based Approach for
Traceability Recovery," in Proceedings of
the 3rd International Workshop on
Metamodels, Schemas, Grammars, and
Ontologies for Reverse Engineering
(ATEM 2006)), 2006, pp. 36-43.

WSEAS TRANSACTIONS on BUSINESS and ECONOMICS Arbi Ghazarian

E-ISSN: 2224-2899 157 Issue 3, Volume 10, July 2013

